A Numerical Study of the Energy Gap of the Quantum Dimer-Pentamer Model

Owen Myers, University of Vermont Chris Herdman, University of Waterloo

Quantum Dimer Model

Rokhsar, Kivelson, Phys. Rev. Lett. 1988.

(At the RK Point)

- Gapless
- Power law decay of dimer correlations in liquid state
- Extensive topological degeneracy

Rokhsar, Kivelson, Phys. Rev. Lett. 1988. Moessner, Sondhi, Phys. Rev. Lett. 2001. Triangular Lattice QDM

(At the RK Point)

- Gapped
- Exponential decay of dimer correlations in liquid state
- Finite topological degeneracy
- Z_2 topological order

Square LatticeQuantum Dimer ModelLocal ConstraintsImage: Description of the sector of the sect

ightarrow U(1) Local gauge symmetry

$$W_{QDM}^{y} = N_{A} - N_{B} = \begin{cases} -L/2 \\ \vdots \\ -1 \\ 0 \\ 1 \\ \vdots \\ L/2 \end{cases}$$

B

A

B

A

B

A

Moessner, Sondhi, Fradkin, Phys. Rev. B. 2001

Possibilities on the square lattice

Dimers at vertex	Corresponding Model	Exact Local Gauge Symmetry	
0 (4)	Trivial Case		
1 (3)	QDM	U(1)	gapless, extensive topological degen.
2	Fully Packed Loop Model	U(1)	gapless, extensive topological degen.
1, 3	Toric Code Odd Parity	Z_2	gapped, finite topological degen.
0, 2, 4	Toric Code Even Parity	Z_2	gapped, finite topological degen.

What else is possible? - Quantum Dimer Pentamer Model (QDPM)

Quantum Dimer Pentamer Model (QDPM)

In the QDPM a new winding number is conserved $- W_{QDPM}^{y} = (N_A - N_B) \mod 3 = \begin{cases} 0 \\ 1 \\ 0 \end{cases}$ $[H_{QDPM}, W_{QDM}^y] \neq 0$ $[H_{QDPM}, W^y_{QDPM}] = 0$ 3x3 fold topological degeneracy on a torus. Extensive \rightarrow Finite top. degeneracy

 $H_{\rm QDPM} = H_{\rm QDM} + H_{\rm pent.}$

Pentamer Dynamics

and Hamiltonian

$$H_{\text{pent.}} = \sum_{i} \left(t_i \sum \text{KE}_i + v_i \sum \text{PE}_i \right)$$

$$|\Psi_{\rm RK}\rangle = \frac{1}{\sqrt{N}} \sum_{C} |C\rangle$$

<u>RK point</u>

 $t_i/v_i = 1$

- Using Monte Carlo method we sample the ground state wave function.
- Power law dimer correlations in QDM \rightarrow QDPM has exponential dimer correlations.
- No evidence of symmetry breaking.

Coupling U(1) gauge field to charge N matter field can produce Z_N gauge theory.

Fradkin. Shenker. Phys. Rev. D. 1979.

can produce zn gauge theory (zN topological order)

Quantum Dimer Model

Fully Packed Loop Model

Dimer orientations are fixed by the lattice

Triangular Lattice QDM

Even Parity Toric Code

+

U(1) gauge field coupled to charge 2 $\longrightarrow Z_2$

(At the RK Point)

- Gapped
- Exponential decay of dimer correlations in liquid state
- Finite topological degeneracy

Triangular Lattice QDM

$$n_{v} = 1, 4 \qquad e^{i\alpha(n_{v}-1)} \qquad \alpha = \{0, 2\pi/3, -2\pi/3\}$$

Local Z_{3} gauge $???? Z_{3}$ topological order?

What is the nature of the lowest lying excited states in the QDPM?

Visons in the triangular lattice dimer model

$$V_i V_j = \prod_{l \in \Gamma} e^{i\pi n_l}$$

- Γ is the path. Open path makes 2 visons $\rightarrow V_i V_j$
- lowest lying excitations
- Closed string commutes with the Hamiltonian
- $V_i V_j |\Psi_0\rangle \rightarrow$ variational excited state
- $\bullet Z_2$ topological order

Vison imaginary time correlation function

 $\langle V_i(0)V_j(\tau)\rangle$

Ivanov, Phys. Rev. B. 2004.

QDPM " Z_3 Visons"

Sign depends on the orientation of the link.

- Oriented string and two magnetic charges.
- Closed string commutes with the Hamiltonian
- Open string makes variational excited state

Imaginary time correlations

Extract gap from imaginary time correlations.

<u>Conclusions</u>

- We propose a quantum dimerpentamer model which may exhibit Z_3 topological order.
- We show evidence of a dimer liquid state at the RK point.
- Using a Monte Carlo method we sample the ground state wave function at the RK point to calculate the dimer and " Z_3 vison" correlations.
- We show that the vision gap and dimer gap are of similar size.

Future Work

- Resolve the vision and dimer gaps.
- Investigate signatures of topological order in the entanglement entropy.
- Determine the phase diagram away from the RK point.