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A. Antoine, (Nature,2012).!
Image: Cristian Ciraci

C.I. Calle !
(Acta Astronautiva, !
2011)

Masuda, Washizu 
and Kawabata 
(IEEE Trans. Ind. 
App.  1998)

• Separation of particles  
H. Kawamoto, (2008) 

 !
• Liquid drop transport!

! ! H. Kawamoto and S. Hayashi,  
(DATE)



Cleaning solar panels
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Complicated Problem of!
many charged particles interacting





1D Either constrain motion !
to surface or:

linear !
quadrupole !
trap



The actual set up



Single Particle Bifurcations



The Electric Curtain

Numerical
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1D The Toroidal Phase Space
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The Electric Curtain



What do we mean by STP?

�(x, t) = f(x)g(t)

�(x, t) ⌘ The potential Energy

Periodic in 
time

Periodic in space



• The kicked rotor  
F. L. Moore, J. C Robinson, C. F. Bharucha, Bala Sundaram, M. G. Raizen 
(PRL 1995)!

• Driven Josephson Junctions,  
E. Boukobza, M. G. Moore, D. Cohen, A. Vardi (PRL, 2010)!

• Transport control & ratchets!

• Hamiltonian, H. Schanz, M. F. Otto, R. Ketzmerick, T. Dittrich 
(PRL,2001)!

• Damped, Jose L. Mateos (PRL, 2000)!

• Dynamic stabilization and potential 
renormalization,  
A. Wickenbrock, P. C. Holz, N. A. Abdul Wahab, P. Phoonthong, D. Cubero, F. 
Renzoni(PRL, 2012)



Pyotr Kapitza!
1894-1984



Example:  Kapitza’s pendulum

Pendulum

suspension!
point

Kapitza’s Pendulum
case 1 case 2

✓

¨✓ + � ˙✓ +
�
g � a!2

cos!t
�
sin ✓ = 0
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Linearize the equations of motion

� = g(t)x2
ẍ+ g(t)x = 0

The Hill Equation
Hill, "On the Part of the 
Motion of Lunar 
Perigee Which is a 
Function of the Mean 
Motions of the Sun and 
Moon." !
Acta Math. 8, 1-36, 1886.



The simple first order case of the Hill equation: 

g(t) = cos!t

The Mathieu equation

ẍ+ (a� 2q cos 2t)x = 0

Solutions:

cem(t) sem(t)

cosine-elliptic sine-elliptic



a!
4E

!"2/2ML2# , !8b#

q!"
2MgL

!"2/2ML2# . !8c#

In view of Eq. !8a#, the boundary condition is $%2(&
#')(!$%2&( , that is, as a function of &, the wave func-
tion has to be periodic with period '. From Table I, such
solutions are AMF of even order: ce2r(&;q) and
se2r#2(&;q) for r!0,1,2,.. . . All other AMF are excluded by
the periodicity condition. We note further that characteristic
values of the energy Em are defined by the eigenvalues am of
the Mathieu equation; from Eq. !8b# we find
Em("2/8ML2)am .
Also, we can see from Eq. !8c# that, for the quantum pen-

dulum, the parameter q depends only on the given physical
constants of the problem, and that Eq. !7# really corresponds
to a Mathieu equation with negative q . To satisfy the usual
definition of the Mathieu functions, we must perform the
change of variable &→('/2"&) according to Table I.
When visualizing mathematical functions, a suitable plot

depends on the purpose. For example, the surfaces shown in
Fig. 2 were done following a mathematical point of view.
These diagrams allow us to appreciate at a glance the evolu-
tion of ce and se as functions of & or q . In Fig. 3 we adopt a
physical point of view to show the probability distributions

$2 of the quantum pendulum. As stated, the wave functions
are written in terms of AMF of even order, ce2r(&;q) and
se2r#2(&;q). We might plot these solutions against the polar
coordinate ) in a rectangular system () ,$2), but a more
meaningful picture is usually a polar diagram. In Fig. 3, we
can visualize how the probability distributions of a quantum
pendulum vary with ).

B. Radial Mathieu functions

The solutions of Eq. !4# when q is positive are the even
(e) and odd (o) oscillatory radial Mathieu functions of the
first and second kind,

R!! Jem!*;q #, Jom!*;q #, first kind,
Nem!*;q #, Nom!*;q #, second kind.

!9#

For q$0 the solutions are known as the evanescent radial
Mathieu functions

R!! Iem!*;q #, Iom!*;q #, first kind,
Kem!*;q #, Kom!*;q #, second kind.

!10#

In elliptic coordinates the radial Mathieu equation !4#
plays a similar role as the Bessel equation in circular cylin-
drical coordinates. Because Bessel functions are better
known than Mathieu functions, visualizing their analogies is
a practical way to gain an insight into the qualitative behav-

Fig. 2. Graphical visualization of angular Mathieu
functions cem(&;q) and sem#1(&;q) over the (& ,q)
plane. The function ce0(&;q) is never negative, al-
though oscillatory.

Table I. Symmetry relations for AMF.

Function
r!0,1,.. . Period

Parity
about &!0

Parity
about &!'/2

AMF
with q$0

ce2r(&;q) ' Even Even ce2r(&;"q)!("1)rce2r('/2"&;q)
ce2r#1(&;q) 2' Even Odd ce2r#1(&;"q)!("1)rse2r#1('/2"&;q)
se2r#2(&;q) ' Odd Even se2r#2(&;"q)!("1)rse2r#2('/2"&;q)
se2r#1(&;q) 2' Odd Odd se2r#1(&;"q)!("1)rce2r#1('/2"&;q)
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ẍ+ (a� 2q cos 2t)x = 0

ior of the RMF. It is known that Bessel equations have four
families of independent solutions,18 namely the ordinary
Bessel functions Jm and Nm , and the modified Bessel func-
tions Im and Km . Each Bessel family splits into two Mathieu
families, for example, the Bessel function Jm splits into the
even Jem and the odd Jom Mathieu functions. Thus there are
eight independent families of RMF. This abundance of ellip-
tic solutions has provoked confused notations in the litera-
ture which often complicates the recognition of the RMF and
their relations. We refer the interested reader to Appendix A,
where a comparative table of notation for the Mathieu func-
tions is provided.
In Fig. 4 we show the first-order RMF for different values

of q . Similar to the Bessel functions, the RMF have a de-
creasing, oscillatory non-periodic behavior. Conversely to

the AMF, the radial solutions oscillate faster as q increases.
In Fig. 5 we plot the RMF Je0 for q!5 in two different
views. Adopting a mathematical point of view, we show in
Fig. 5!a" Je0 as a function of the argument #. The Bessel
analogy of Je0 is indeed the lowest-order Bessel function J0 .
Like J0 , the function Je0 is oscillatory, decreasing, and non-
periodic. By comparing Je0 with respect to J0 , we can ob-
serve that the maximum at the origin of Je0 is not as domi-
nant as in the case of J0 , and that Je0 oscillates faster as #
increases.
Figure 5!b" shows again Je0 , but now physical insight is

gained by plotting it as a function of sinh(#) instead of #. For
instance, as we will see below, Je0 could represent the radial
dependence of a vibrating mode in an elliptic membrane.10 In
this case the argument # is associated with the radial elliptic
coordinate !which is dimensionless". However, to visualize
the spatial behavior of the mode, it is required to plot it
against a coordinate with a length dimension such as x or y .
Let us consider the y axis. By setting $!%/2 in Eq. !2", it is
clear that the y axis is written as y! f sinh #. In this manner,
the plot in Fig. 5!b" could show the behavior of the vibrating
mode as a function of the normalized coordinate y / f .
The plot in Fig. 5!b" reveals an important property of the

radial Mathieu functions: they tend to be damped periodic
functions when they are plotted against a spatial coordinate
like x&cosh # or y&sinh #. This characteristic is interesting
because often the physical patterns are associated with the
asymptotic behavior of the mathematical functions.

III. VISUALIZING STANDING WAVES IN AN
ELLIPTIC MEMBRANE

As stated, the angular and the radial Mathieu equations
can be expected to appear in any problem involving the
Helmholtz equation expressed in elliptic coordinates.10,32
Consider the free oscillations of an elliptic membrane with

Fig. 3. Polar diagrams of the probability distributions of a quantum pendu-
lum as a function of '.

Fig. 4. Plots of radial Mathieu functions with q!1
!solid line", q!2 !dashed line", and q!3 !dotted line".
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Gutierrez-Vega, Rodrıguez-Dagnino, Meneses-Nava, Cha v́ez-Cerda,"

“Mathieu functions, a visual approach,” (2002) 



Stability Regions

1.2 Delayed Systems. It has been known for a long time,
that several problems can be described by models including past
effects. One of the classical examples is the predator-prey model
of Volterra !16", where the growth rate of predators depends not
only on the present quality of food #say, prey$, but also on the past
quantities #in the period of gestation, say$. The first delay models
in engineering appeared for wheel shimmy by von Schlippe and
Dietrich !17", and for ship stabilization by Minorsky !18".
One of the most important mechanical applications is the cut-

ting process dynamics. After the extensive work of Tlusty et al.
!19", Tobias !20" and Kudinov !21,22", the so-called regenerative
effect has become the most commonly accepted explanation for
machine tool chatter !23,24". This effect is related to the cutting
force variation due to the wavy workpiece surface cut in the pre-
vious revolution.
Delayed equations also arise in robotics applications, e.g. tele-

manipulation with information delay can be mentioned !25–27".
Time delay also arises in neural network models, where the inter-
actions of the neurons are delayed !28".
The systems, where the rate of change of state is determined by

the present and also by discrete past states of the system, are
described by retarded differential-difference equations #RDDEs$.
The initial-value problem of general RDDEs was first correctly
formulated by Myshkis !29". Since then, several books appeared
summarizing the most important theorems, like the books of My-
shkis !30", Bellman and Cooke !31", Halanay !32", Hale !33",
Kolmanovskii and Nosov !34", Stépán !23", Hale and Lunel !35",
and Diekmann et al. !36".
A linear autonomous RDDE with a single delayed term has the

form

ẏ# t $!Ay# t $"By# t#%$ (5)
where A and B are n$n matrices and %%0. The characteristic
function of system #5$ reads

det#&I#A#Be#&%$!0 (6)
Opposite to the characteristic polynomial of autonomous ODEs,
this characteristic function has, in general, infinite number of ze-
ros. The sufficient and necessary condition for asymptotic stability
of #5$ is that all the infinite number of characteristic roots have
negative real parts.
The first attempts for determining stability criteria for second-

order RDDEs was made by Bellman and Cooke !31" and Bhatt
and Hsu !37". They used the D-subdivision method !38" combined

with a theorem of Pontryagin !39". A more sophisticated method
was developed by Stépán !23" applicable even for the combina-
tion of several discrete and continuous time delays. A novel ap-
proach was developed by Olgac and Sipahi !40" for linear systems
with a single delay.

Example: The Delayed Oscillator. The case '!0 of Eq. #11$
gives the second order delayed oscillator

ẍ# t $"( ẋ# t $")x# t $!bx# t#2*$ (7)
Although the stability chart #see Fig. 2$ in the parameter plane
() ,b) has a very clear structure, it was first published correctly
only in 1966 by Hsu and Bhatt !2". According to Kolmanovskii
and Nosov !34", this chart was also published in the literature in
Russian, often referred there as Vyshnegradskii diagram. For the
case (!0, the stability boundaries are lines with slope "1 and
#1. For (!0.1 and 0.2, the stability boundaries are not lines any
more. The )!b line is associated to saddle-node instability, all
the other boundary curves represent Hopf instabilities.

1.3 Time Periodic Delayed Systems. A linear periodic
RDDE with a single delayed term has the form

ẏ# t $!A# t $y# t $"B# t $y# t#%$, A# t"T $!A# t $,

B# t"T $!B# t $ (8)
The Floquet theorem can be extended for these systems as it was
shown by Halanay !41", but an infinite dimensional linear opera-
tor, the so-called monodromy operator, is defined instead of the
finite dimensional fundamental matrix of the traditional Floquet
theory !5,33". This operator can be defined by yT!Uy0 , where the
continuous function yt is defined by the shift yt(+)!y(t"+),
+!!#% ,0" , and T is the principal period of system #8$.
The nonzero elements of the spectrum of U are called the char-

acteristic multipliers of system #8$, also defined by

Ker#,I#U$-.0/ (9)
instead of #3$. Similarly to the periodic systems, if , is a charac-
teristic multiplier, and ,!exp(&T), then & is called characteristic
exponent.
The trivial solution of system #8$ is asymptotically stable, if and

only if all the #infinite number of$ characteristic multipliers are in
modulus less than one, that is all the characteristic exponents have
negative real parts. Similarly to time periodic ODEs, the three
types of stability losses can be identified according to the location
of the critical characteristic multipliers: the secondary Hopf, the
period one, and the period two instability routes.
For periodic RDDEs, the operator U has no closed form, so no

closed form stability conditions can be expected. For practical
calculations, only approximations can be applied. An alternative
of Hill’s infinite determinant method was used by Seagalman and
Butcher !42" to determine stability properties of turning processes
with harmonic impedance modulation. Another approach was
used by Insperger and Stépán !43" when the discrete time delay is

Fig. 1 Strutt-Ince stability chart of the damped Mathieu equa-
tion „4… Fig. 2 Hsu-Bhatt-Vyshnegradskii stability chart of Eq. „7…

Journal of Dynamic Systems, Measurement, and Control JUNE 2003, Vol. 125 Õ 167
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• Krylov-Bogoliubov averaging method

Another Approach:!

Effective Liouville equation for classical 
driven system (arXiv:cond-mat/9806137v2 [cond-mat.stat-mech])
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Why is this not a !
Hopf Bifurcation?

Lets look at the !
stability multipliers



The next!
Bifurcation?

Lets look at the !
stability multipliers



Multiple !
Particles !
!

concentration = N/n

{
n�

Fi = �r�STP field �r�interparticle

�interparticle =
q2

r



{ {

Long range interactions in periodic boundary !
conditions

xi x

xj

{

0th !
Order

1st !
Order

xi � xj

{n�

{{
n�� (xi � xj) n�+ (xi � xj)



May be expressed in terms of !
polygamma function 

X
Fimages

Fij =
q2rij
krijk3

�
⇣ q

n�

⌘2 ⇣
 (1)(�rij/�) +  (1)(rij/�)

⌘

Known to arbitrary precision



q = 1 m = 1

Integer !
concentrationsn = 1

� = 0.6



Multiple particle bifurcation 
diagrams

N=2 N=3 N=4

N=5 N=6 N=7



N=4

N=3

For small A the 
time average 

force points in 
the direction of 
the antinodes of 

the potential

Antinode



N=8

Type of first bifurcation changes 
from N=6 to N=7

Trying to understand transition



A different approach: 
Assume nothing about the velocity 
distributions.

Squared Fractional Deviation

(�KE)2 =
1

4

NX

i,j

(hv2i v2j i � hv2i ihv2j i)

(�KE)2

hKEi2



N=2 N=3 N=4

N=5 N=6 N=7



20 Particles in 3 

q 2 =.01

�





Clustering in 
“bifurcation” 

diagram matches 
the drop in 

effective number of 
degrees of freedom
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E’ is the !
kinetic energy !
in the Poincaré !
sections only

Another example:!
N=3



We want to understand the particle statistics in the 
Poincaré sections

• Need to compare velocity correlations in the Poincaré 
sections to those in the full system.!

• We need an analytical understanding of the results.  

Luca D’Alessio, Anatoli Polkovnikov, 
“Many-body energy localization transitions 
in periodically driven systems”, Annals of 
Physics, 333 (2013)
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N=5

Before Transition After Transition



N=8



What does !
this potential !
look like?



k=0.972

The kicked rotator 
described by

H = p2/2I + k cos ✓

1X

n=�1
�(t� nT )

k=0.5 k=5.0

Images from scholarpedia



For an off-resonant weak driving with ! ! 1 and q "
!, the chaotic component of phase space becomes hard to
resolve. In this case we obtain the many-body manifesta-
tion of the Kapitza pendulum physics [22], where a peri-
odic vertical drive of the pendulum axis stabilizes the
’ ¼ ! inverted pendulum and a horizontal drive destabil-
izes its ground ’ ¼ 0 state.

In generalizing the Kapitza pendulum physics into the
context of the driven bosonic Josephson junction, we have
to deal with two modifications: (i) the phase space of the
full BHH is spherical and not canonical, as opposed to the
truncated, cylindrical Josephson phase space; (ii) realis-
tically fðtÞmay include a noisy component whose effect on
the effective potential should be determined. We therefore
rederive the Kapitza physics for the full BHH, using a
master equation approach rather than by the standard
time scale separation methodology. The quantum state of
the system is represented by the probability matrix ",
satisfying d"=dt ¼ i½H ;"' where H ¼ H þ fðtÞW
with fðtÞ ¼ sinð!tþ#Þ. The small parameter is the driv-
ing period $t ¼ 2!=! for harmonic drive, or the correla-
tion time if fðtÞ is noisy. Using a standard iterative pro-
cedure the difference "ðtþ $tÞ ) "ðtÞ can be expressed to
1st order as an integral over ½H þ fðt0ÞW;"'. The 2nd
order adds a double integral over ½Hþ fðt0ÞW; ½H þ
fðt00ÞW;"'', and the 3rd order adds a triple integral over
½H þ fðt0ÞW; ½H þ fðt00ÞW; ½H þ fðt000ÞW;"'''. If fðtÞ
contains a noisy component, as in the standard master
equation treatment, we obtain after integration over the

second order contribution a diffusion term ½W; ½W;"''. In
the familiar classical Focker-Planck context, with W ¼ x,
this term takes the form @2"ðx; pÞ=@p2. However, for a
strictly periodic noiseless driving the time integration over
a period vanishes, and evaluation to 3rd order is required.
Integrating the 3rd order contribution over a period we get
terms that can be packed as ½½W; ½W;H'';"'. Hence, the
effective static potential is

Veff ¼ ) 1

4!2 ½W; ½W;H'': (4)

Other terms also exist [producing the tilt of the islands in
Figs. 3(c) and 4(c)]; however, they depend on the driving
phase #, and vanish if the stroboscopic sampling is aver-
aged. In the standard canonical case with Ŵ ¼ Wðx̂Þ this
expression gives the familiar Kapitza result ½W 0ðxÞ'2=
ð4M!2Þ as in [23]. For the BHH noncanonical spherical
phase space, with W / Lx or W / Ly, it is straightforward
to verify that Eq. (4) generates the expected Kapitza terms
L2
y ¼ l2sin2%sin2’ or L2

x ¼ l2sin2%cos2’, approaching the
pendulum effective potential in the equatorial region % *
!=2. Additional terms slightly renormalize the bare values
of U and K.
The predicted Kaptiza physics effects are confirmed

numerically in Fig. 3 and Fig. 4 for the vertical VvðtÞ and
horizontal VhðtÞ drive, respectively. Comparison of the
stroboscopic Poincaré plots for the undriven (a) and
driven (c) BHH clearly shows the stabilization of the
j0;!i coherent state by the vertical L̂x driving (Fig. 3),
and the destabilization of the j0; 0i preparation by the

FIG. 2 (color online). Mean-field stroboscopic phase-space
plots of classical trajectories (left), and a representative N ¼
100 many-body quantum Husimi distribution (right), for the
dynamics that is generated by the BHH with VhðtÞ driving,
assuming j0; 0i coherent preparation. The parameters are u ¼
30, and ! ¼ 1. The strength of the driving is q ¼ 0:1 (top), and
q ¼ 0:5 (middle), and q ¼ 1:0 (bottom). The evolution of the
fringe-visibility is plotted in the lower panel for q ¼ 0:1 (bold
solid line, green) and q ¼ 1:0 (solid line, blue).

FIG. 3 (color online). Quantum Kapitza pendulum with verti-
cal driving, and j0;!i coherent preparation. The panels are
arranged as in Fig. 1. The parameters are u ¼ 100, ! ¼ 30,
and N ¼ 100. The strength of the driving is q ¼ 0 (a, b, lower
panel dashed blue line) and q ¼ 3 (c, d, lower panel solid red
line). Circles in the lower panel denote the time at which the
Husimi distribution in (c, d) is plotted. The classical stabilization
of the inverted pendulum results in a protected single-particle
coherence of the initial preparation.
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plots of classical trajectories (left), and a representative N ¼
100 many-body quantum Husimi distribution (right), for the
dynamics that is generated by the BHH with VhðtÞ driving,
assuming j0; 0i coherent preparation. The parameters are u ¼
30, and ! ¼ 1. The strength of the driving is q ¼ 0:1 (top), and
q ¼ 0:5 (middle), and q ¼ 1:0 (bottom). The evolution of the
fringe-visibility is plotted in the lower panel for q ¼ 0:1 (bold
solid line, green) and q ¼ 1:0 (solid line, blue).

FIG. 3 (color online). Quantum Kapitza pendulum with verti-
cal driving, and j0;!i coherent preparation. The panels are
arranged as in Fig. 1. The parameters are u ¼ 100, ! ¼ 30,
and N ¼ 100. The strength of the driving is q ¼ 0 (a, b, lower
panel dashed blue line) and q ¼ 3 (c, d, lower panel solid red
line). Circles in the lower panel denote the time at which the
Husimi distribution in (c, d) is plotted. The classical stabilization
of the inverted pendulum results in a protected single-particle
coherence of the initial preparation.
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Horizontal driving 

Vertical 
driving 

densates with’ ¼ 0 [17,18]. Several recent works propose
to control such phase-diffusion processes by means of
external noise [19,20] or modulation of the Hamiltonian
parameters to induce ! flips of the relative phase [21].

In this Letter, we build further on the pendulum analogy
to explore the effect of oscillatory driving on the collective
phase dynamics of the BHH and determine to what extent
does known driven pendulum physics carry over to this
spherical phase-space model. We consider two possible
time-dependent driving fields, ‘‘vertical’’ (v) and ‘‘hori-
zontal’’ (h), given by

Vv;hðtÞ ¼ fðtÞŴ ¼ Dv;h sinð!tþ"ÞL̂x;y: (3)

Here ‘‘vertical’’ and ‘‘horizontal’’ are in reference to the
pendulum model. The classical phase-pendulum motion is
in the LxLy equatorial plane of the BHH, with the’ ¼ 0,!
stationary points lying on the Lx axis, making it the
‘‘gravitation’’ direction of the pendulum. Hence, Vv is
equivalent to a vertical drive of the pendulum axis and
Vh corresponds to a horizontal drive. With respect to the
two-mode BHH, the first type of driving VvðtÞ is a modu-
lation of the hopping frequency K, which may be attained
by changing the Barrier height, as illustrated in Fig. 1(a),
whereas VhðtÞ may be induced by means of shaking the
double-well confining potential laterally, as illustrated in
Fig. 1(b), thus effectively introducing the equivalent of an
electromotive force in the oscillating frame. It is customary
to define the dimensionless frequency! % !=!J, and the

dimensionless driving strength q %
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UN=K

p
ðD=!Þ ¼

D=ðK!Þ. Fast and slow driving correspond to ! & 1
and ! ' 1, respectively, whereas q & ! and q ' !
correspond to strong and weak driving.
Within the one-dimensional pendulum approximation,

the angle variable ’ and the momentum n are canonical
conjugate variables. It is well known [22] that off-resonant,
fast driving is effectively equivalent to the additional static
‘‘pseudopotential,’’ Veff

v;h ¼ (ð1=4Þq2Klsin2ð’Þ, as illus-

trated in Fig. 1. It is possible to further refine this effective
description, adding momentum dependent terms, as de-
scribed in [23]. For sufficiently strong (q2 > 2) vertical
drive, the effective term Veff

v can stabilize the ’ ¼ !
inverted pendulum [Fig. 1(c)], an effect known as the
Kapitza pendulum [22]. By contrast, the effective term
Veff
h can destabilize under the same conditions the ’ ¼ 0

pendulum-down ground state, and generate two new de-
generate quasistationary states [Fig. 1(d)].
Generally, the driven BHH has a mixed classical phase-

space structure similar to that of a kicked top [24], with
chaotic regimes bound by Kolmogorov-Arnold-Moser tra-
jectories, making the bosonic Josephson junction a good
system for studying quantum chaos [25,26] along with 3-
mode (trimer) BECs [27], the kicked-rotor realization by
cold atoms in periodic optical lattice potentials [28], ultra-
cold atoms in atom-optics billiards [29], and the recent
realization of a quantum kicked top by the total spin of
single 133Cs atoms [30]. The unique features of the driven
BHH in this respect are (i) it offers a novel avenue of
‘‘interaction-induced’’ chaos, which should be distin-
guished from the single-particle ‘‘potential-induced’’
chaos that had been highlighted in past experiments with
cold atoms, and (ii) the pertinent dynamical variables are
relative phase and relative number, leading to nonlinear
and possibly chaotic phase dynamics, which may be moni-
tored via fringe-visibility measurements in interference
experiments.
Figure 2 shows representative results for near-resonant

(! ) 1) horizontal driving. Stroboscopic Poincaré plots of
the classical (mean-field) evolution at drive-period inter-
vals are shown on the left for varying drive strength, q,
demonstrating the growth of the stochastic component to
form a chaotic ‘‘sea’’ surrounding regular ‘‘islands’’ of
nonchaotic motion. On the right, we represent the full
many-body BHH evolution via the Husimi Q function
Qðn; ’Þ ¼ jhn; ’jc ðtÞij2, which provides visualization
for the expansion of the time-dependent many-particle

state jc ðtÞi in the spin coherent states basis jn; ’i ¼
ðN!Þ*1=2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ n=N

p
ây1 þ ei’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2* n=N

p
ây2 ,Njvaci.

For weak driving the initial preparation j0; 0i lies within a
regular region of phase space and retains its coherence. In
contrast, for larger values of q the initial coherent state
spreads quickly throughout the chaotic sea, resulting in a
highly correlated many-body state, as manifest in the

dynamics of fringe visibility gð1Þ12 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL̂xi2 þ hL̂yi2

q
=l.

Similar results, with a slightly different classical phase-
space structure are obtained for vertical driving.

FIG. 1 (color online). Schematics of a driven Bose-Josephson
junction: (a) The vertical driving obtained by time-dependent
modulation of the barrier height between the wells. (b) The
horizontal driving is via lateral shaking of the double-well
potential. (c) The potential term in the Josephson Hamiltonian
without driving (dash-dotted line), and with vertical driving
(solid line), which includes the effective potential (dashed
line). Circles denote stable stationary points whereas - denotes
instabilities. (d) The same for horizontal driving. It should be
noted that ‘‘vertical’’ and ‘‘horizontal’’ refer to the motion of the
pendulum axis in the Kapitza analogy, which incidentally
matches the direction of potential modulation.
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densates with’ ¼ 0 [17,18]. Several recent works propose
to control such phase-diffusion processes by means of
external noise [19,20] or modulation of the Hamiltonian
parameters to induce ! flips of the relative phase [21].

In this Letter, we build further on the pendulum analogy
to explore the effect of oscillatory driving on the collective
phase dynamics of the BHH and determine to what extent
does known driven pendulum physics carry over to this
spherical phase-space model. We consider two possible
time-dependent driving fields, ‘‘vertical’’ (v) and ‘‘hori-
zontal’’ (h), given by

Vv;hðtÞ ¼ fðtÞŴ ¼ Dv;h sinð!tþ"ÞL̂x;y: (3)

Here ‘‘vertical’’ and ‘‘horizontal’’ are in reference to the
pendulum model. The classical phase-pendulum motion is
in the LxLy equatorial plane of the BHH, with the’ ¼ 0,!
stationary points lying on the Lx axis, making it the
‘‘gravitation’’ direction of the pendulum. Hence, Vv is
equivalent to a vertical drive of the pendulum axis and
Vh corresponds to a horizontal drive. With respect to the
two-mode BHH, the first type of driving VvðtÞ is a modu-
lation of the hopping frequency K, which may be attained
by changing the Barrier height, as illustrated in Fig. 1(a),
whereas VhðtÞ may be induced by means of shaking the
double-well confining potential laterally, as illustrated in
Fig. 1(b), thus effectively introducing the equivalent of an
electromotive force in the oscillating frame. It is customary
to define the dimensionless frequency! % !=!J, and the

dimensionless driving strength q %
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UN=K

p
ðD=!Þ ¼

D=ðK!Þ. Fast and slow driving correspond to ! & 1
and ! ' 1, respectively, whereas q & ! and q ' !
correspond to strong and weak driving.
Within the one-dimensional pendulum approximation,

the angle variable ’ and the momentum n are canonical
conjugate variables. It is well known [22] that off-resonant,
fast driving is effectively equivalent to the additional static
‘‘pseudopotential,’’ Veff

v;h ¼ (ð1=4Þq2Klsin2ð’Þ, as illus-

trated in Fig. 1. It is possible to further refine this effective
description, adding momentum dependent terms, as de-
scribed in [23]. For sufficiently strong (q2 > 2) vertical
drive, the effective term Veff

v can stabilize the ’ ¼ !
inverted pendulum [Fig. 1(c)], an effect known as the
Kapitza pendulum [22]. By contrast, the effective term
Veff
h can destabilize under the same conditions the ’ ¼ 0

pendulum-down ground state, and generate two new de-
generate quasistationary states [Fig. 1(d)].
Generally, the driven BHH has a mixed classical phase-

space structure similar to that of a kicked top [24], with
chaotic regimes bound by Kolmogorov-Arnold-Moser tra-
jectories, making the bosonic Josephson junction a good
system for studying quantum chaos [25,26] along with 3-
mode (trimer) BECs [27], the kicked-rotor realization by
cold atoms in periodic optical lattice potentials [28], ultra-
cold atoms in atom-optics billiards [29], and the recent
realization of a quantum kicked top by the total spin of
single 133Cs atoms [30]. The unique features of the driven
BHH in this respect are (i) it offers a novel avenue of
‘‘interaction-induced’’ chaos, which should be distin-
guished from the single-particle ‘‘potential-induced’’
chaos that had been highlighted in past experiments with
cold atoms, and (ii) the pertinent dynamical variables are
relative phase and relative number, leading to nonlinear
and possibly chaotic phase dynamics, which may be moni-
tored via fringe-visibility measurements in interference
experiments.
Figure 2 shows representative results for near-resonant

(! ) 1) horizontal driving. Stroboscopic Poincaré plots of
the classical (mean-field) evolution at drive-period inter-
vals are shown on the left for varying drive strength, q,
demonstrating the growth of the stochastic component to
form a chaotic ‘‘sea’’ surrounding regular ‘‘islands’’ of
nonchaotic motion. On the right, we represent the full
many-body BHH evolution via the Husimi Q function
Qðn; ’Þ ¼ jhn; ’jc ðtÞij2, which provides visualization
for the expansion of the time-dependent many-particle

state jc ðtÞi in the spin coherent states basis jn; ’i ¼
ðN!Þ*1=2½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2þ n=N

p
ây1 þ ei’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2* n=N
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ây2 ,Njvaci.

For weak driving the initial preparation j0; 0i lies within a
regular region of phase space and retains its coherence. In
contrast, for larger values of q the initial coherent state
spreads quickly throughout the chaotic sea, resulting in a
highly correlated many-body state, as manifest in the

dynamics of fringe visibility gð1Þ12 ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hL̂xi2 þ hL̂yi2

q
=l.

Similar results, with a slightly different classical phase-
space structure are obtained for vertical driving.

FIG. 1 (color online). Schematics of a driven Bose-Josephson
junction: (a) The vertical driving obtained by time-dependent
modulation of the barrier height between the wells. (b) The
horizontal driving is via lateral shaking of the double-well
potential. (c) The potential term in the Josephson Hamiltonian
without driving (dash-dotted line), and with vertical driving
(solid line), which includes the effective potential (dashed
line). Circles denote stable stationary points whereas - denotes
instabilities. (d) The same for horizontal driving. It should be
noted that ‘‘vertical’’ and ‘‘horizontal’’ refer to the motion of the
pendulum axis in the Kapitza analogy, which incidentally
matches the direction of potential modulation.
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Applications in atom interferometers 
that could potentially resolve phase 
shifts below the standard quantum limit 
(1/√N). They would be limited by the 
Heisenberg fundamental limit (1/N).
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Importance of Understanding 
STP Potentials

• Transport control & ratchets!

• Hamiltonian, H. Schanz, M. F. Otto, R. Ketzmerick, T. Dittrich (PRL,
2001)!

• Damped, Jose L. Mateos (PRL, 2000)!

• Josephson Junctions,  
E. Boukobza, M. G. Moore, D. Cohen, A. Vardi (PRL, 2010)!

• Dynamic stabilization and potential renormalization,  
A. Wickenbrock, P. C. Holz, N. A. Abdul Wahab, P. Phoonthong, D. Cubero, F. 
Renzoni(PRL, 2012)!

• Dust mitigation and control in extraterrestrial 
environments (NASA),  
O. Myers, J. Wu, J. Marshall (JAP, 2013).
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