Multiple particles' nonlinear dynamics in a spatiotemporaly periodic potential

- Advisors: Junru Wu, Jeffrey Marshall
- Funded by NASA Space Grant Consortium, NNX10AK67H and NNX08AZ07A

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

5) Proposal.

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

5) Proposal.

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

The Electric Curtain

A. Antoine, (Nature,2012). Image: Cristian Ciraci

Masuda, Washizu and Kawabata (IEEE Trans. Ind. App. 1998)

C.I. Calle (Acta Astronautiva, 2011)

- Separation of particlesH. Kawamoto, (2008)
- Liquid drop transport H. Kawamoto and S. Hayashi, (DATE)

Cleaning solar panels

Complicated Problem of many charged particles interacting

The actual set up

Single Particle Bifurcations

The Electric Curtain

The Toroidal Phase Space

$$\dot{\mathbf{v}} = \mathbf{f}(\mathbf{v}) \begin{cases} \dot{x}_1 = x_2 \\ \dot{x}_2 = A \sin x_1 \cos x_3 (\frac{2 \cosh y}{\cosh^2 y - \cos^2 x_1}) - \beta x_2 \\ \dot{x}_3 = 1 \end{cases}$$

1D

Time mapping and Poincaré sections

X

x

10000	*	
100 miles		
101.1		
2040		
1000		
and the second second		
-		

Poincaré Section

2D

Variations in the damping coefficient

A=9.0

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

5) Proposal.

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

The Electric Curtain

What do we mean by STP?

Periodic in $\Phi(x,t) = f(x)g(t)$ time

Periodic in space

• The kicked rotor

F. L. Moore, J. C Robinson, C. F. Bharucha, Bala Sundaram, M. G. Raizen (PRL 1995)

- Driven Josephson Junctions, E. Boukobza, M. G. Moore, D. Cohen, A. Vardi (PRL, 2010)
- Transport control & ratchets
 - Hamiltonian, H. Schanz, M. F. Otto, R. Ketzmerick, T. Dittrich (PRL,2001)
 - Damped, Jose L. Mateos (PRL, 2000)
- Dynamic stabilization and potential renormalization,

A. Wickenbrock, P. C. Holz, N. A. Abdul Wahab, P. Phoonthong, D. Cubero, F. Renzoni(PRL, 2012)

Pyotr Kapitza 1894-1984

Example: Kapitza's pendulum

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

5) Proposal.

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

Linearize the equations of motion

The Hill Equation

 $\ddot{x} + g(t)x = 0$

Hill, "On the Part of the Motion of Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon." Acta Math. 8, 1-36, 1886.

The simple first order case of the Hill equation:

$$g(t) = \cos \omega t \qquad \ddot{x} + (a - 2q\cos 2t)x = 0$$

The Mathieu equation

Solutions:

$$\operatorname{ce}_m(t)$$

cosine-elliptic

$$\operatorname{se}_m(t)$$

sine-elliptic

 $\ddot{x} + (a - 2q\cos 2t)x = 0$

Gutierrez-Vega, Rodrıguez-Dagnino, Meneses-Nava, Cha´vez-Cerda, "Mathieu functions, a visual approach," (2002)
Stability Regions

Another Approach:

Krylov-Bogoliubov averaging method

Effective Liouville equation for classical driven system (arXiv:cond-mat/9806137v2 [cond-mat.stat-mech])

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

5) Proposal.

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

Model Potential

$\Phi(x,t) = -A\cos x \cos t$

A variety of choices of Poincaré

Why is this not a Hopf Bifurcation?

Lets look at the stability multipliers

The next Bifurcation?

Lets look at the stability multipliers

Multiple Particles

 $n\lambda$

concentration =
$$N/n$$

$$\mathbf{F}_i = -\nabla \Phi_{\text{STP field}} - \nabla \Phi_{\text{interparticle}}$$

$$\Phi_{\text{interparticle}} = \frac{q^2}{r}$$

Long range interactions in periodic boundary conditions

May be expressed in terms of polygamma function

$$F_{ij} = \frac{q^2 r_{ij}}{\|r_{ij}\|^3} - \left(\frac{q}{n\lambda}\right)^2 \left(\psi^{(1)}(-r_{ij}/\lambda) + \psi^{(1)}(r_{ij}/\lambda)\right)$$

Known to arbitrary precision

Integer concentrations

Multiple particle bifurcation diagrams

N=6

N=4

0.96

0.88

N=7

For small *A* the time average force points in the direction of the antinodes of the potential

Antinode

Type of first bifurcation changes from N=6 to N=7

Trying to understand transition

A different approach:

Assume nothing about the velocity distributions.

$$(\Delta KE)^2 = \frac{1}{4} \sum_{i,j}^N (\langle v_i^2 v_j^2 \rangle - \langle v_i^2 \rangle \langle v_j^2 \rangle)$$

Squared Fractional Deviation

N=2

N=5

N=4

N=3

20 Particles in 3λ

Clustering in "bifurcation" diagram matches the drop in effective number of degrees of freedom

Outline

1) The electric curtain: Experimental, Numerical.

2) What are STP potentials?

3) Current methods of understanding.

4) The simple model: Work on the fundamentals.

5) Proposal.

E' is the kinetic energy in the Poincaré sections only

Another example: N=3

We want to understand the particle statistics in the Poincaré sections

- Need to compare velocity correlations in the Poincaré sections to those in the full system.
- We need an analytical understanding of the results.

Luca D'Alessio, Anatoli Polkovnikov, "Many-body energy localization transitions in periodically driven systems", Annals of Physics, **333** (2013)

Acknowledgments

UVM Physics Department

N=5

Before Transition

After Transition

N=8

What does this potential look like?

The kicked rotator described by

$$H = p^2/2I + k\cos\theta \sum_{n=-\infty}^{\infty} \delta(t - nT)$$

$$p/2\pi$$

 0.8
 0.6
 0.4
 0.2
 0.0
 0.0
 0.2
 0.4
 0.6
 0.4
 0.2
 0.0
 0.2
 0.4
 0.6
 0.8
 0.8
 0.8
 0.8
 0.8
 0.6
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.8
 0.2
 0.0
 0.0
 0.2
 0.4
 0.6
 0.8
 0.8
 0.8
 0.8
 0.2
 0.0
 0.0
 0.2
 0.4
 0.6
 0.8
 $x/2\pi 1.0$

k=0.5

Images from scholarpedia

k=5.0

E. Boukobza, M. G. Moore, D. Cohen, A. Vardi (PRL, 2010)

Horizontal driving

Applications in atom interferometers that could potentially resolve phase shifts below the standard quantum limit $(1/\sqrt{N})$. They would be limited by the Heisenberg fundamental limit (1/N).

Velocity Measurements

Solar panal applications

Propagating Trajectory

Equations of motions

 $= \frac{1}{2} \sum_{\substack{i\neq i}}^{N} \frac{q^2 \hat{r}}{r_{i,i}^2} - \beta \dot{\vec{x}} + \nabla \Phi$ $\ddot{\vec{x}}_i$

IMPORTANCE OF UNDERSTANDING STP POTENTIALS

- Transport control & ratchets
 - Hamiltonian, H. Schanz, M. F. Otto, R. Ketzmerick, T. Dittrich (PRL, 2001)
 - Damped, Jose L. Mateos (PRL, 2000)
- Josephson Junctions, E. Boukobza, M. G. Moore, D. Cohen, A. Vardi (PRL, 2010)
- Dynamic stabilization and potential renormalization, A. Wickenbrock, P. C. Holz, N. A. Abdul Wahab, P. Phoonthong, D. Cubero, F. Renzoni(PRL, 2012)
- Dust mitigation and control in extraterrestrial environments (NASA),
 O. Myers, J. Wu, J. Marshall (JAP, 2013).

EXPERIMENTAL SETUP

TWO PARTICLES IN APPARATUS

MODEL SPATIOTEMPORALLY PERIODIC POTENTIAL

 $\Phi(x,t) = -A\cos x \cos t$

concentration = N/n

Equation of motion

$$\ddot{x} = A\sin x \cos t - \beta \dot{x}$$

$$\beta = 0.6$$

FIRST SINGLE PARTICLE BIFURCATIONS

PROPAGATING TRAJECTORY

q²=1.0 MULTIPLE PARTICLES (INTEGER CONCENTRATIONS)

N=2

N=4

N=7

N=6

N=5

N=4

N=3

For small *A* the time average force points in the direction of the antinodes of the potential

Antinode

MULTIPLE PARTICLE EXPERIMENT (N=5)

SIMULATION (PERIODIC BOUNDARY CONDITIONS)

NOT SLICED N=3 (AVG. OVER 9 RUNS)

SLICED N=3

SLICED N=3

N=20

